Anti-maximum Principles for Indefinite-weight Elliptic Problems

نویسنده

  • Yehuda Pinchover
چکیده

λ0 = λ0(1, P, Ω) := sup{λ ∈ R : ∃u > 0 s.t. (P − λ)u ≥ 0 in Ω}, where 1 is the constant function on Ω, taking at any point x ∈ Ω the value 1. Using the Krein-Rutman theorem, the author proved in [13, 14] generalized maximum principles and anti-maximum principles (in brief, GMPs and AMPs, respectively) for the problem (P − λ)uλ = f 0 in Ω. (1.1) In particular, these GMPs and AMPs (without weight) hold true in nonsmooth, unbounded domains, and for operators with coefficients which may blow up in a neighborhood of infinity in Ω. The GMP in [14] reads roughly that under some ‘smallness’ conditions on uλ, if λ < λ0, and uλ satisfies Equation (1.1),

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse positivity for general Robin problems on Lipschitz domains

It is proved that elliptic boundary value problems in divergence form can be written in many equivalent forms. This is used to prove regularity properties and maximum principles for problems with Robin boundary conditions with negative or indefinite boundary coefficient on Lipschitz domains by rewriting them as a problem with positive coefficient. It is also shown that such methods cannot be ap...

متن کامل

Maximum Principles for a Class of Nonlinear Second-order Elliptic Boundary Value Problems in Divergence Form

For a class of nonlinear elliptic boundary value problems in divergence form, we construct some general elliptic inequalities for appropriate combinations of u(x) and |∇u|2, where u(x) are the solutions of our problems. From these inequalities, we derive, using Hopf ’s maximum principles, some maximum principles for the appropriate combinations of u(x) and |∇u|2, and we list a few examples of p...

متن کامل

Maximum principles for elliptic dynamic equations

We consider second order partial dynamic operators of the elliptic type on time scales. We establish basic maximum principles and apply them to obtain the uniqueness of Dirichlet boundary value problems for dynamic elliptic equations, eg Poisson equation. Our special cases include the situation in which several variables are continuous and the other discrete. We conclude with open problems, we ...

متن کامل

Liouville Theorems, a Priori Estimates, and Blow-up Rates for Solutions of Indefinite Superlinear Parabolic Problems

In this paper we establish new nonlinear Liouville theorems for parabolic problems on half spaces. Based on the Liouville theorems, we derive estimates for the blow-up of positive solutions of indefinite parabolic problems and investigate the complete blow-up of these solutions. We also discuss a priori estimates for indefinite elliptic problems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005